

Tektonik - Strukturgeologie

macro km Massstab

synthetisch

Stratigraphie
Strukturgeologie
Metamorphose

micro - meso mm - m Massstab

analytisch

GeometrieMechanikRheologie

Lisunne

I Geologie im Kartenbild

Einfache Grosstrukturen

- Flachliegende Schichten
- Steilstehende Schichten, Intrusionen

Interpretation

- Superpositionsprinzip
- Schichtlücke: Diskordanz
- Deformation: Winkeldiskordanz
- Überschneidungskriterien
- Relative Alter
- zeitliche Abfolge

Karten

- Tektonische
- Geologische

Flachliegende Schichten

Flachliegende Schichten

Beispiel: Grand Canyon

Flachliegende Schichten

Flachliegende Schichten - Stelle I

Flachliegende Schichten - Stelle I

Flachliegende Schichten - Stelle 2

Stratigraphie

MESOZOIC

PALEOZOIC

Great Unconformity

zeitliche Abfolge

Superpositionsprinzip

Nikolaus Steno (1669): "De solido intra solidum"
I. Horizontbeständigkeit (Lateral konstant)
2. Horizontale Ablagerung
3. Lagerungsabfolge (Superpositionsprinzip):
Altersabfolge bei undeformierten Sedimenten:
unten (Liegendes) alt - oben (Hangendes) jung

2

Schichtdicke Verwitterung Kartenbild

Diskordanz

James Hutton (1726-1797) entdeckt 1788 Winkeldiskordanz bei Siccar Point (Schottland)

Old Red Sandstein Stratheden Group (Devon)

Chartwacken Tenschiefer Gier Group Cited

NAMES OF THE OWNER O

D. Subsidence and renewed deposition

Diskordanz - Schichtlücke

Relative Alter

Steilstehende Schichten, Intrusionen

Steilstehende Schichten

Intrusion

Beispiel: Isles of Mull, Schottland

Intrusion

Gänge - Lagergänge (dikes - sills)

Gänge (dikes)

Lagergänge (sills)

Dolerite, Basalt, and M Augite Andesite Dykes Camptonite Dykes C (perhaps Pre-Tertiary Late Basic (mainly Olivine-free tI Talaidh Type) Early Busic bI Olivine Dolerite/ Acid Imainly Craignurite and earlier than bU aI Dolerite and Basalt cD of Creag na h-Iolaire Complex. Dolerite, Basalt, and D Augite Andesite sills and sheets not included as cD.bl.artI pD p indicates Basic Pitchstone in D SD s indicates acenolithic spD sapphire or its normal associates Mugearite W Basalt with Large Felspar phenocrysts fB B Basalt of Pale

Group of Ben More, where separated (base ornanented)

B Basalt where not

separated as B'or fB

B

B

Tringh Doire Dlabhain 56°27' Creage 56'26' 56 25 Maoh Mbeadhonach

Intrusion

Gänge (dikes) = diskordant Lagergänge (sills) = konkordant

Platznahme von Plutonen

Sedimente

Metamorphe Sedimente oder Kristallingesteine

Kristallingesteine

Schmelze/Intrusivgesteine

10 km

Intrusion

Vulkanischer Stock + Gänge

Interpretation

Überschneidungskriterien

Jüngeres durchschlägt / schneidet Älteres

Verwerfung und Erosion

Intrusion

Relative Alter

Superpositionsprinzip: unten alt - oben jung flachliegende Schichten sind undeformiert

Überschneidungskriterien: Jüngeres durchschlägt / schneidet Älteres

Zeitliche Abfolge

Geologische -Tektonische Karten

Tektonische Karte

~	Aussenalpine Plattform - Plate-forme actor-advice
urpische Konisernipistium – Plas-Kons zontvende entyskene	Implicit to the state of th
3	IM Bedgere Minnes Bedgere
Allege contrensité estiplécoe	AutoBase State State AutoBase AutoBase State Stat
Europischer Konanstrakterd -	Constraints and constrain
	Instructional protection by the control of
at Ing – Alby addiant	Unterpreteinische Endimentationen of erhoppen, Ophalles – Algen er daufen de adhrenz unsvise allebaren, geschaft erholmten erholmten er
Welfa	Unergensenklichen Krististikindenken (z. r. est Seidersenthedeckung) Alegens die ander ontestilte percelapate biblioterer (p. / accusarise die alchiment) Beserkung-wahrendige (S.), die Galans and Beserkung-wahrende biblioterer (p.).
	Annual de la desta des desta desta d
Sard Intergraves	Alternative state of the s
Britegerratie Schwelle – Stark Meisegerseter Annue et annemete kann en kannenen Anne Annue ann som sommer a size advergeren.	Attention of the state of t
er Chemen Brieggersteile Schwidtle – Souch Noiscopreade Intern et strement komen internet anderen Others are none sectorer at the Automotion	
Presenterisch- figherster Otenn Diese Schwilfe – Oor Ansococcesie Diese serveren termenteringen Diese ansocienen als diesentering	<image/>
dupe controlled entropee dupe controlled en	
Abriticte formismithel – More activities activitities activities activities activities a	<page-header></page-header>

Tektonische Einheiten: (gemeinsam bewegt) Kristallin- Sedimentdecken Paläogeographische Zuordnung

paläogeographisch gruppiert

Geologische Karte

Geologische Einheiten: Sedimente (Sedimentgesteine) Magmatische, metamorphe Gesteine Stratigraphische (Alters-) Zuordnung

tektonisch gruppiert

Tektonische

Geologische

Tektonische

Geologische

Mont Terri Antiklinale

Tektonik

Ausseralpine Plattform – *Plate-forme extra-alpine*

Tertiäre Gräben (Oberrhein-Graben [RG], Bresse-Graben [BG]) Fossés tertiaires (Fossé du Haut-Rhin [RG], Fossé bressan [BG])

in Cal	Tertiär Tertiaire	
たい	Mesozoikum Mésozoïque	ſ

Schwäbische Alb [SA], Dinkelberg, Vorbergzone, Plateaus der Haute-Saône [HS], Tafeljura [TJ], Zone der Avant-Monts [AM] Alb de Souabe [SA], Dinkelberg, zone des collines bordières, Plateaux de Haute-Saône [HS], Jura tabulaire [TJ], zone des Avant-Monts [AM]

Schwach deformiertes Jungpaläozoikum Paléozoique supérieur peu déformé

Eingefaltetes Paläozoikum Paléozoique imbriqué Variszische Granite Granites varisques Kristallines Grundgebirge Socle cristallin

Vogesen- [Vog] und Schwarzwald-Massiv [Sch] Massifs des Vosges [Vog] et de la Forêt Noire [Sch]

Ausseralpine tertiäre Sedimente

Sédiments tertiaires extra-alpins

Nordalpines Vorland - Avant-pays nord-alpin

Ausseralpine paläozoische und mesozoische Sedimente Sédiments paléozoïques et mésozoïques extra-alpins

Ausseralpin - Extra-alpin

Oberdevon–Unterkarbon Dévon. sup. – Carb. inf. Dévon. sup. – Carb. inf. Séen (Unt.–) Oberkarb. Carb. (inf.) – sup.

Granite (spät- bis postkinematisch) Granites (tardi- à postcinématique)

Granite, migmatitische Granitoide (früh- bis synkinematisch) Granites, granitoïdes migmatitiques (pré- à syncinématique)

Granodiorite, Tonalite (z.T. anatektisch) Granodiorites, tonalites (parfois anatectique)

Quarzmonzonite (inkl. basischere Randfazies) Monzonites quartziques (faciès de bordure plus basiques inclus)

Schwarzwald Forêt Noire

Vogesen

Vosges

Geologie

Tektonik

Geologie

2 Strukturengeologisch kartieren

Messung und Darstellung von Strukturen

- Strukturgeologische Karten
- Orientierung von Flächen im Raum
- Signaturen

Stereographische Projektion

- Fallazimuth (Einfallsrichtung) Fallwinkel (Einfallswinkel)
- Flächen und Pole

Beispiel: Jura (Klus bei Moutier)

Geologische Karte

Luftbild

Falte im Kartenbild

3D Darstellung: Karte mit Profilen

Strukturen in der Karte

Einfallsrichtung /-winkel Streichen / Fallen

Einfallsrichtung /-winkel Streichen / Fallen

Orientierung einer Ebene im Raum

Darstellung von Flächen:

I.Streichen (0°- 180°) - Fallen (0°- 90°)

2. Einfallsrichtung (0°- 360°) - Einfallswinkel (0°- 90°), auch:

Fallazimuth (*dip direction*) (0°- 360°) - Fallwinkel (*dip*) (0°- 90°) Darstellung von Linien:

Abtauchrichtung (plunge direction) / Abtauchen (plunge)

Faltenstruktur

Falten

66

Einfallsrichtung / Einfallswinkel 175 / 66 Streichen / Fallen N85E / 66S Signaturen

Verwerfungen

Extension (länger)

Kompression (kürzer)

Translation (neutral)

Stereographische Projektion

Orientierung von Flächen im Raum

use this !

Beispiel: Einfallsrichtung: 165° Einfallswinkel: 30° bzw. Fallazimuth: 165° Fallwinkel: 30°

veraltet: Streichen: 75° Fallen: 30° Süd

Orientierung von Flächen im Raum

Flächen im Stereonetz

Schmidt Netz = flächentreu

Orientierung einer Fläche im Raum

Projektion: obere Halbkugel

untere Halbkugel

Fläche im Stereonetz: Spur und Pol

- I. Kreis markieren, N,S,W,E eintragen, Einfallsrichtung von N aus markieren (Uhrzeigersinn).
- Markierung auf E oder W rotieren. Einfallswinkel auf E-W Gerade ab der Peripherie abzählen, Spur des Grosskreises durchpausen, Pol vom Zentrum aus (90° von Spur) eintragen.
- 3. Blatt zurückrotieren.

Richtung im Stereonetz

- I. Kreis markieren, N,S,W,E eintragen, Abtauchrichtung von N aus markieren (Uhrzeigersinn).
- 2. Markierung auf N, S, E oder W rotieren. Abtauchen auf N-S bzw. E-W Gerade ab der Peripherie abzählen, markieren.
- 3. Blatt zurückrotieren.

Klüfte und Brüche im Stereonetz

Klüfte und Brüche im Stereonetz

Falten im Stereonetz

I. Fläche: Südschenkel

Faltenachsen - Konstruktion

2. Fläche: Nordschenkel

Isoklinalfalten im Stereonetz

Stereographische Projektion

Konzentrationen im Stereonetz

Stereographische Projektion von Flächenpolen (Flächennormalen)

- ± parallele Schichten
- ⇒ ein Maximum
- ← horizontale Schichten

vertikale Schichten, E-W
streichend

gefaltete Schichten ⇒ Gürtelverteilung

← Faltenachse N-S streichend

3 Geologische Strukturen

Extensions-Strukturen

- Abschiebung, Horst-Graben
- Listrische Dehnungsbrüche

Kontraktions-Strukturen

- Überschiebung
- Falten

Strike-Slip-Strukturen

- Blattverschiebung
- Transpression / Transtension

weitere Strukturen

Intersektion Struktur - Topographie

- Fenster Klippe
- Morphologie ≠ Struktur

EXTENSION versus KONTRAKTION

Abschiebungen: Streckung & Ausdünnung


```
Listrische Verwerfung
```


Pfiffner et al. Erdwissenschaften

Extensions-Strukturen

Abschiebung

10 m

Graben - Horst

Domino-Brüche (block faulting)

100 m
Horst-Graben Domino

l km

Listrische Dehnungsbrüche

Harcuvar metamorphic core complex (Artillery Mts., Western Arizona)

km

Listrische Brüche verbinden sich zu Detachment Faults

Flach einfallender Detachment Fault

Detachment

10 km

Horizontaler Detachment Fault (schichtparallel)

Kontraktions -Strukturen

Falten und Überschiebungen

А

Rampenfalte (fault bend fold)

Falte mit zerschertem Schenkel (stretched fold limb)

B Falte mit Überschiebung (fault-propagation fold)

Zerschnittene Falte (dissected fold)

Abscherfalte (detachment fold)

- - Scherfalte (drag fold)

Auf- / Überschiebung

10 m

Überschiebung

100 m

Thrust fault in the Chilean Andes Photo credit Constantino Mpodozis. Seneca Stone Quarry Located in Seneca County Image courtesy of Richard W.Allmendinger

flat schichtparallel ramp schicht durchschneidend

Gefaltete Überschiebung ...

http://www.geologieviewer.ch/ga.php#

km

... und erst noch auf dem Kopf

Geologische Karte der Schweiz 1:25'000, Blatt Säntis

erriasien

Geologie Portal - Geotope

dav0.bgdi.admin.ch/kogis_web/downloads/geologie/geotope/geotope-CH_206.pdf

Falten

100 m

Beispiel: Ugab (Namibia)

10 km

Beispiel: Ugab (Namibia)

Falten

Falten: Achsenebenen

Falten: Faltenachsen

Achsenebene (Fläche)

(Scharnierlinie) Faltenachse (Linear)

> horizontale Falte horizontale Faltenachse vertikale Achsenebene

abtauchende Falte abtauchende Faltenachse vertikale Achsenebene

Falten: tauchende Faltenachsen

tauchende Antiklinalen und Synklinale tauchende Antiklinalen: Kernaustausch

Falten: Kernaustausch

https://map.geo.admin.ch/

Synform - Antiform

 \bigstar "younging direction"

Haakon Fossen: Structural Geology

Strike-Slip -Strukturen

Blattverschiebung

sinistral

l km

dextral

Sinistrale Blattverschiebung

https://map.geo.admin.ch

swisstopo

https://map.geo.admin.ch

https://map.geo.admin.ch

1000 m

recap: Transversalstörungen im Jura

Transpression Transtension

Ramsay

Fossen

Flower structures

Fossen

Vertikalbewegungen

Dom

Becken

Morphologie ≠ Struktur

Beispiel: Becken

Michigan Basin

Isostatische Absenkung während Sedimentation

Beispiel: Dom

Black Hills South Dakota

> Aufwölbung durch Intrusion

Granite

Schist

Y

Salzstöcke (Diapire)

Velocity profile

Haakon Fossen: Structural Geology

Intersektion: Struktur -Topographie

Klippe - Fenster

Karte

Profil

Beispiel: Engadiner Fenster

Nördliche Kalkalpen = Ostalpine Decken

Beispiel: Klippendecke

Fig. 2 N

111100-011-012

Grebs

12.4

Gr Mithen 1902 Holwag

 Des weiser Nollen, G-Genetick, #-Kopfli, B-Bandi, reister Kollen, Zw-Zwischenmitten, R-Ramackere, g-Grippeli

yach

S

NNW

Zinggelenfluh

Kl Mithen

Grosser und kleiner Mythen

Morphologie ≠ Struktur

Morphologie ≠ Struktur

Bedeutung von Strukturen für Rohstoffe

Antiklinale

Verwerfung

Salzstock (→Dom)

4 Strain (Deformation als Zustand)

Geometrie der Deformation: Strain

- Strain ellipse
- 2-D 3-D strain
- Reine Scherung einfache Scherung (pure shear simple shear)

Strain - Messung

- Strain marker
- Längenänderung, Formänderung
- überlagerte Verformung
- heterogene Verformung

Deformation

- **Deformations Zustand:** finite Verformung: $e_1, e_2, e_3, \lambda_1, \lambda_2, \lambda_3$ verformter Zustand relativ zum unverformten Zustand
- 2 Deformations - Bewegung: Veränderung der Form durch die Zeit displacement rate: d (m/s, km/Ma,...) strain rate: $\dot{\epsilon}$ (s⁻¹)

3 **Deformations - Prozess:** Elastisches, visköses Verhalten (Kristallplastizität, Fliessgesetze) als Reaktion auf Druck, Spannung, Temperatur, Plattenbewegungen: $\dot{\epsilon} = f(T, \Delta\sigma, ...)$

siehe Teil I der Vorlesung

Kinematik

Strain

Deformations - Zustand

Deformation: Translation + Verformung (displacement + strain)

Strain ID

L₀ unverformt L' verformt

Längenänderung $\Delta L = L' - L_0$

Extension $\epsilon = \Delta L / L_0$ (dimensionslos)

ε > 0 Streckung ε < 0 Verkürzung

Х

Strain 2D

x, y unverformt x', y' verformt

Extension $\epsilon_x = \Delta x / x$ $\epsilon_y = \Delta y / y$

Translation ist in der Regel nicht messbar -Längenänderungen sind messbar

Strain 2D - Strainellipse

Extension $\epsilon = \Delta L / L_0$ $L' = L_0 \cdot (I + \epsilon)$

quadratische Elongation $\lambda_1 = (1 + \epsilon_1)^2$ $\lambda_2 = (1 + \epsilon_2)^2$

 $\lambda_1 > \lambda_2$

Χ

 $\lambda > I$ Streckung $\lambda < I$ Verkürzung

Achsenverhältnis R_f (long/short)

Beispiel: $\sqrt{\lambda_1} = 2.0$ $\sqrt{\lambda_2} = 0.5$ $R_f = a/b = 4.0$

 R_f finite strain ratio

Ellipsenachsen $\sqrt{\lambda_1}$, $\sqrt{\lambda_2}$

Achsenverhältnis $R_f = \sqrt{\lambda_1} / \sqrt{\lambda_2} = a / b$ a, b = lange, kurze Achse $R_f \ge 1.00$

flächenkonstante Verformung $\Delta A = 0:$ $\sqrt{\lambda_1} \cdot \sqrt{\lambda_2} = 1$ $\sqrt{\lambda_2} = 1 / \sqrt{\lambda_1}$ $R_f = (\sqrt{\lambda_1})^2 = \lambda_1$

Strain 3D - Strainellipsoid

Beispiel: $\sqrt{\lambda_1} = 2.0$ $\sqrt{\lambda_2} = 1.0$ $\sqrt{\lambda_3} = 0.5$ $R_f = a/b = 4.0$

 R_f finite strain ratio

Ellipsenachsen $\sqrt{\lambda_1}, \sqrt{\lambda_2}, \sqrt{\lambda_3}$

Plain strain $\sqrt{\lambda_2} = I$

volumenkonstante Verformung $\Delta V = 0$

$$R_{f} = \sqrt{\lambda_{1}} / \sqrt{\lambda_{3}}$$
$$\sqrt{\lambda_{1}} \cdot \sqrt{\lambda_{3}} = I$$
$$\sqrt{\lambda_{3}} = I / \sqrt{\lambda_{1}}$$

 $R_f = (\sqrt{\lambda_1})^2 = \lambda_1$

Strain 3D Flinn - Diagramm finite strain

prolate "Zigarren"

symmetrische Streckung constrictional strain $k = \infty \implies |+e_2 = |+e_3$

plane strain k = 1 => $e_2=0$

symmetrische Plättung flattening strain $k = 0 \Rightarrow |+e_1 = |+e_2$

 $\varepsilon_s = strain magnitude$

oblate "Pfannkuchen"

Reine Scherung - pure shear

L, '

$$\label{eq:eq:expansion} \begin{split} \epsilon &= (L' - L_0) \; / \; L_0 = \Delta L \; / \; L_0 \\ R_f &= \sqrt{\lambda_1} \; / \; \sqrt{\lambda_2} = a \; / \; b \end{split}$$

Einfache Scherung - simple shear

Reine Scherung - koaxial

Achsen der Strainellipse

- rotieren nicht
- sind Materiallinien

Einfache Scherung - rotational

shear strain $\gamma = \tan(\psi) = d / h$

Achsen der Strainellipse • rotieren langsamer als Materiallinien

• sind keine Materiallinien

Strainmessung

Strain marker ?

Strain marker

Strainmessung

Was ist messbar? Längenänderung Winkeländerung ⇒ Strainellipse

Im allgemeinen nicht messbar ist, ob Verformung durch reine Scherung oder einfache Scherung !

Achsen verformter Objekte messen

= Strain marker!

Längenänderung von ursprünglich zueinander senkrechten Linien, die wieder senkrecht sind.

Abstandsänderung messen

im Feld / Handstück / Dünnschliff Mittelpunktgerüst wird geplättet

= Strain marker!

Urspüngliches Gitter ist bekannt Mittelpunkte nachher erkennbar

Vorgehen: verformte Mittelpunkte plotten Strain Ellipse berechnen

überlagerte Verformung

I. Plättung Streckung durch Zerbrechen

Letzte Deformation zuerst

überlagerte Verformung

geplätteter Kiesel vor Zerbrechen:

$$R_f = a/b$$

/1

Formänderung a/b messbar

Volumenkonstanz & runde Form angenommen

Heterogene Verformung

Strainmessung an Ooiden in Helvetischen Decken

Geologischer Atlas 1:25'000

Morcles - Decke

swisstopo https://map.geo.admin.ch/

Helvétique (Autochtone; nappe de Morcles et ses racines) (?) Eocòne sup. - Oligocène inf.: Flysch parautochtone Principaux niveaux de grés Priabonien: Marnes à Globigérines Priabonien: Calcaire à netites Nummulites Aveo blocs et lentillos de 🔓 Cristallin Trias Priabonion: Couches à Vivicares et à Cérithes (?) Priabonien inf. («Auversien»): Couches du Roc Champion Albien - Cénomanien; Crétacé sup.: Schistes gréseux; alternance de schistes et de calcaires Aptien supérieur: Schistes gréseux et calcaires «Urgonien» (Barrémien sup. - Aptien inf.): Culcaires massifs clairs Barrémien inférieur: Alternance de marnes et de calcaires Hauterivien: Calcaire siliceux Valanginien (calcaire): Calcaires massifs cródominants Portlandien sup. - Valanginien (Valanginien schisteux): Alternance de marnes et de calcaires argileux Malm supérieur: Calcaires compacts Argovien: Calcaires gris lites Callovo-Oxfordien : Marnes schisteuses Oo Ithe ferrugineuse pallovienne Bathonien: Calcalres el solistes sombres Bajocien - Bathonien (?) [autochtone]: Calcuire mass I transgressif Bajocien supérieur (nappe de Morcles): Calcaires si deux Bajocien Inférieur [nappe de Morcles]: A ternance de schistes marneux et de calcaires siliceux Aalénien: Schistes argileux sombres Toarcien (partie supérieure): Schistes foncés Toarcien: Schistes avac bar cs calcaires Lias moyen: Alternance de calcalres et de marnes Lotharingian: Grès siliceux Hettangien - Sinémurien: Schlstes et calcalres à Schlotheimie et à Arietites Rhittion: Alternance de quartziles, schisles el calcaires

lev.

1h

- Trias supérieur: Calcaire dolomitique
- Trias supérieur: Argilites ou schistes bigarrés
- Trias supérieur: Grès à plantes
- Trias moyen (?): Cornicule
- Trias inférieur: Quartzites, arkosss

Tektonische Karte 1:500'000

Tektonische Karte 1:500'000

5 Kinematik (Deformation als Bewegung)

Deformationsanzeiger

- Spöddeformation
- plastische Deformation

Mikrostrukturen

- typisch für Extension
- typisch für strike slip
- Scherzonen
- typisch für Verkürzung

Geol. Geschwindigkeiten / Verformungsraten

- Berechnung
- Lokalisierung

Deformation

- I Deformations Zustand: finite Verformung: e_1 , e_2 , e_3 , λ_1 , λ_2 , λ_3 verformter Zustand relativ zum unverformten Zustand
- 2 Deformations Bewegung: Veränderung der Form durch die Zeit displacement rate: d (m/s, km/Ma,...) strain rate: k (s⁻¹)
- 3 Deformations Prozess: Elastisches, visköses Verhalten (Kristallplastizität, Fliessgesetze) als Reaktion auf Druck, Spannung, Temperatur, Plattenbewegungen: $\dot{\epsilon} = f(T, \Delta \sigma, ...)$

Kinematik

Geometrie

Dynamik

siehe Teil I der Vorlesung

allgemeine Deformationsanzeiger

spröd - kalt - schnell

- Zerr- Dehnungsklüfte
- Abkühlungsklüfte
- Bruchflächen: Besenstrukturen
- Bruchharnisch
- Mikrobrüche
- Stylolite

duktil - warm - langsam

- Falten
- Boudinage
- Schieferung
- duktile Scherzone

Spannungsrichtung Abkühlungsgradient Fortpflanzungsrichtung Relativbewegung Dilatanz, Extension Verkürzungsrichtung

Verkürzung Dehnung Plättung Schersinn

Mikrostrukturen der Extension

Bruchfläche • Besenstrukturen Fortpflanzungsrichtung

→ Ausbreitungsrichtung

Klüfte

• Zerr- Dehnungsklüfte

Spannungsrichtung

Klüfte

• Abkühlungsklüfte

Abkühlungsgradient

Säulenbasalt

Mikrobrüche • Mikrobrüche Dilatanz, Extension

crack - seal

microcracks

 $L_0 = L' - \Delta L$

→ Längenänderung (mm)

crack seal

gelb / blau (Farben I. Ordnung von Quarz): optische Kontinuität gleiche Orientierung der Kristallachsen

gelb / blau Quarz, niedere Doppelbrechung

bunt Kalzit, hohe Doppelbrechung

dunkel Einschlüsse

bulk strain durch crack seal

strain ellipse

Boudinage

duktil

→ Dehnung, Extension

book shelf boudinage

spröd

→ Dehnung, Extension

strike slip Mikrostrukturen

Bruchharnisch

• Bruchharnisch Relativbewegung

→ Faltenvorschub - Versetzungsrichtung

dehnender Übertritt STRIKE - SLIP extensional bridge

Zerrklüfte - Fiederklüfte

Transpression & Transtension

zone = source $\Delta V_{zone} > 0$

zone = sink $\Delta V_{zone} < 0$

kompressiver Übertritt compressional bridge

Scherzonen

Duktile Scherzonen

→ Schersinn

S-C und C-C' - Gefüge

S = schistosité C = cisaillement

finite Verformung - strain history

Mikrostrukturen der Verkürzung

Stylolithe

Stylolite Verkürzungsrichtung

- 0, I diagenetische Stylolithe
- 2 tektonische Stylolithe: senkrecht zur Faltenachse
- 3 Schrägstylolithe: horizontale Scherung
- 4 tektonische Stylolithe: ('blockierte Querdehnung')

→ Versetzungsrichtung (nicht -betrag)

source - sink

Ptygmatische Faltung

→ Viskositätskontrast

Überschiebung

Verkürzung

Schieferung

(Metamorphose)

geologische Geschwindigkeiten, Verformungsraten (strain rates)

Geologische Geschwindigkeiten

Momentane Plattengeschwindigkeit: I bis I0 cm / Jahr = $10^{-2} - 10^{-1}$ m / 31'536'000 s $\approx 10^{-9} - 10^{-8}$ ms⁻¹

Geologische Geschwindigkeiten

im Durchschnitt : 3000 km / 150 Ma= $3 \cdot 10^3 \cdot 10^3 \text{ m} / 150 \cdot 10^6 \cdot 3 \cdot 10^7 \text{ s}$

Geologische Geschwindigkeiten

zeitlich variable Plattengeschwindigkeit

kann auch örtlich variabel sein

Haakon Fossen: Structural Geology

Verformungsraten

Geschwindigkeit = Länge / Zeit	ms ⁻¹ Meter / Sekunde	
tektonische Platten: zu Fuss: Faktor 10 ⁻⁹	3 cm / Jahr 3.6 km / h	~10 ⁻⁹ ms ⁻¹ 1 ms ⁻¹
Verformungsrate (strain rate)= Strain / Zeits-1= (Länge / Länge) / Zeit(strain: dimensionslos)		
 (I) = (Längenänderung / Länge) / Zeit (2) = Geschwindigkeit / Länge 		
woher kommen die 'magischen' 10 ⁻¹⁴ s ⁻¹ ???		

Rate als Strain / Zeit

Beispiel: Alpen Verkürzung während Kollision Hunderte von km in Millionen Jahren

t: $3 \text{ Ma} \approx 3 \cdot 10^{6} \cdot 3 \cdot 10^{7} \text{ s} \approx 10^{14} \text{ s}$ L₀: z.B. 100 km Δ L: z.B. 100 km

 $\Rightarrow \Delta L / L_0 = x \cdot 10^5 \text{ m} / x \cdot 10^5 \text{ m} \Rightarrow e \approx 1$ $\dot{e} = e / t = 1 / 10^{14} \text{ s}^1 = 1 \cdot 10^{-14} \text{ s}^{-1}$

Rate als Geschwindigkeit / Länge

Lokalisierung: räumlich & zeitlich

für 100 km Breite: $\dot{\Upsilon} \approx 10^{-14} \text{ s}^{-1}$

räumlich

```
für Damage zone \approx 100 \text{ m}:

Faktor = 100 km / 100 m = 10^3

\Rightarrow \dot{\Upsilon} \approx 10^{-11} \text{ s}^{-1}

für Slip zone \approx 1 \text{ mm}:

Faktor = 100 km / 1 mm = 10^8

\Rightarrow \dot{\Upsilon} \approx 10^{-6} \text{ s}^{-1}
```


zeitlich

```
für kurzzeitige Bewegung (Erdbeben):

Faktor Zeit = 3 \cdot 10^7 s / 30 s = 10^6

\Rightarrow \dot{\Upsilon} \approx 1 s<sup>-1</sup>

bzw. \dot{\Upsilon} \approx 100-1000 s<sup>-1</sup>, da grösserer Versatz berücksichtigt werden muss
```

Geschwindigkeit ≠ Verformungsrate

cm
mm

Zusammenfassung: Kinematik

Deformationsmarker (≠ strain marker)

Bewegunsgrichtung: Bewegungsbetrag: Bewegungssinn: Schersinn: Bruchflächen, Harnisch, Stylolithe crack seal Falten, Schieferung (komp), Boudinage (ext) en echelon Klüfte, duktile Scherzone

Geologische Geschwindigkeiten

tektonische Platten:~10-9 ms-1seismic slip~1 ms-1pro memoria: Seismische Wellen~4-6 ·103 ms-1

Geologische Verformungsraten (strain rate)

Gebirge "typisch geologisch" schnell, z.B. Scherzonen lokalisiert (creeping faults) 10⁻¹⁴ s⁻¹ 10⁻¹⁰ - 10⁻¹² s⁻¹ bis zu 10⁻⁶ s⁻¹

6 Extensions-Tektonik

Rifting

- stages of rifting
- active / passive rifting

Geophysikalische Merkmale

- Geometrie Topographie
- Schwereanomalie
- Relativbewegung
- Wärmefluss
- Krustenausdünnung

Verschiedene Rifts - Typen

- narrow rift
- wide rift
- metamoprphic core complex
- rheology of detachment faults

Rifting

Rifts - aktiv und fossil

Rifts and Sutures of the World. Contract Report NAS 5-24094. Geophysics Branch, ESA Division, Goddard Space Flight Center, Greenbelt, Maryland, 238 pp.
fossile Rifts

Rifts, which do not attain the oceanic stage are termed "failed rifts". This term should better be replaced with "fossil rifts", because these structures are not failed rifts, but rather failed oceans.

Nord-Atlantik Öffnung:

- Paläozän / Eozän
- Jura / Kreide
- Trias / Jura

Bresse Rhein Graben:

Paläogen

Ural - Ozean:

Präkambrium

Rifting

RIFT (genetic) region where the crust has split apart. GRABEN (descriptive) trough, much longer than wide.

A

Haakon Fossen: Structural Geology

rifting → seafloor spreading

active - passive rifting

active rifting: Mantel Plume initiiert isostatischen Uplift Vulkanismus und "Doming" früh

passive rifting: Dehnung der Lithosphäre gefolgt von Mantel-Aufstieg Vulkanismus und "Doming" spät in Riftentwickung

Bewegungsrichtung

http://earth-literally.blogspot.ch/2012/01/basin-analysis-flog.html

Fossile rift: Rheingraben

Fossil ocean: Piemont-Ozean

Geophysikalische Merkmale

Rift - Geometrie - Charakteristika

7- crustal thinning

Abschiebungen, angehobene Schultern negative Bouguer Anomalie differentiell Bewegung seichte Seimsizität hoher Wärmefluss ausgedünnte Kruste

sieh auch: http://earth-literally.blogspot.ch/2012/01/basin-analysis-flog.html

Block faulting

Listric faults

Kompatibiltätsprobleme

Rift - Flanken

I - normal faults flanks

Beispiel: Afar

View of the Dabbahu rift, Afar region of Ethiopia. Recent lava flows are cut by subvertical normal faults. Rheingraben

Rift - Topographie

2- uplifted shoulders

Beispiel: Lake Malawi

Rift flank uplifts = permanent structures

Caused by: mechanical unloading during extension → isostatic rebound

 ≠ thermal structures
(In fossil rifts, thermal support ended long time ago)

Rift - Schwere-Anomalie

3- negative Bouguer Anomaly

Beispiel: East African Rift

pro memoria

Rift - Öffnungsbewegung

4- differential motion of flanks

Beispiel: Golf von Korinth

Rift - Seismizität

5- shallow (tensional) seismicity

Beispiel: Golf von Korinth

Rift - Wärmefluss

6- higher heat flow

Beispiel: Kenya

Wichura, Bousquet, Oberhänsli, et al. 2011 Geol.Soc.Lond.Spec.Pub.

Qaverage100 mVm²old cratons< 40 mWm²²</td>old oceanic crust~ 50 mWm²²young mountain belts60-75 mWm²²

http://earth-literally.blogspot.ch/2012/01/basin-analysis-flog.html

Rift - Krustenausdünnung

7- crustal thinning

Beispiel: Golf von Biscaya

Bisycay margin Western Approaches margin (WAM) Newfoundland margin

different rift types

narrow - wide rift

Narrow rift (localized): Niedriger geothermischer Gradient: die Festigkeit von Kruste und Mantel ist relativ hoch - kein gravitativer Kollaps

Wide rift (distributed): Höherer geothermischer Gradient: die Festigkeit von (Kruste und) Mantel nimmt ab - weiträumiger Kollaps der Lithosphäre

narrow rift: Bsp. Baikal Rift

Multichannel seismic reflection line across central part of Lake Baikal showing seismic data (top) and interpretation (bottom). The thickest deposits are confined to a narrow trough that is 15 to 20 kilometers (9 to 12 miles) wide.

Seismisches Profil Interpretation

Topographie

wide rift: Bsp. Basin and Ranges

flache Moho

metamorphic core complexes

Metamorphic Core Complex

Wide rift (localized):

Sehr hoher geothermischer Gradient: im unteren Teil der verdickten Kruste nimmt die Festigkeit stark ab

 → in der oberen (relativ stärkeren) Kruste bleibt die Extension lokalisiert, während die untere Kruste homogen ausgedünnt wird

Davis et al. 1986, Geology

metamorphic core complex features

MCC: Bsp. Western North America

MCC: Bsp. Ägäis

Problem mit den detachment faults

Detachment Fault, Western Chemihuevi Mountains

Low-T deformation:	Grain size sensitive.
Cataclasis	Small grain sizes.

High-T deformation:

Dislocation creep.

Grain boundary sliding.	Grain size sensitive.
Diffusion creep.	Small grain sizes.

7 Gebirgsbildung

Kompressive Plattengrenzen

- Subduktion
- Akkretion
- Orogenese

Gebirgstypen

- Inselbogen
- Andiner Typ
- Kollisionsgebirge (Kontinent-Kontinent)

Alpen

- Tektonischer Aufbau
- Verkürzung

Kompressions-Tektonik

Kompressive Plattengrenzen

Ozean - Ozean Inselbogen

Ozean - Kontinent Andiner Typ

Kontinent - Kontinent Kollisionsgebirge

Pfiffner et al. Erdwissenschaften

pro memoria

Lithosphäre

Subduktion - Subduktionskanal

Cloos and Shreeve, 1988, Pageoph

Akkretionskeil (Akkretionskomplex)

Pfiffner et al., 2012

Subduktion→Akkretionskeil→Orogenkeil

Massenbilanz im Orogen

Pfiffner et al. Erdwissenschaften

Pfiffner et al. Erdwissenschaften

Gebirgstypen

(I) Kollision Eurasien - Philippinen

Ozean - Ozean: Marianen

https://www.pmel.noaa.gov/eoi/marianas_site.html

open.edu

extinct are

back-are basin

Vulkanischer Inselbogen

(2) Kollision Nazca-Platte - S-Amerika

Ozean - Kontinent: Anden

Tiefenstruktur der Anden

Tiefenstruktur der Anden

(3) Kollision Eurasien - Indien

Kontinent - Kontinent: Himalaya

Himalaya (aktuell)

Erdbeben 25. 4. 2015: Frontale Hauptüberschiebung (Main Frontal Thrust)

Himalaya (aktuell)

Erdbeben 25. 4. 2015: Frontale Hauptüberschiebung (Main Frontal Thrust)

(4) Plattengrenze Europa - Afrika

aktuelle (abgeklingende) Bewegung

Alpen

Alpenbogen

https://upload.wikimedia.org/wikipedia/commons/4/4a/Alpenbogen.jpg

Schweizer Alpen

Tektonische Postkarte

Blockdiagram

Tektonische Stellung

Nordkontinent

Südkontinent

extern: helvetisch intern: penninisch

tektonisch tiefer

Tektonische Karte

Tiefenstruktur der Alpen

Pfiffner et al. Erdwissenschaften

100 km

Verkürzung

Verkürzung

Pfiffner et al. Erdwissenschaften

- Känozoikum: Subalpine Molasse
- Känozoikum: Flysch
- Mesozoikum
- Kristallines Grundgebirge

Penninische Decken

Penninische Decken i. Allg.

Ultrahelvetikum

Kreide

Säntis-, Glarner-Decke

Kreide (Säntis-Decke)

Glarner-Decke

Abgewickeltes Profil

horizontale Verkürzung $\Delta L / L_0 = 0.63 = 63\%$

Vorlandbecken

Tektonische Subsidenz

8 Entstehung der Alpen

Abriss der plattentektonischen Entwicklung

Geologisches Signalement

- Tafeljura
- Faltenjura
- Helvetikum
- Externe Massive
- Molasse
- Penninikum
- Ostalpin
- Südalpin

Entstehung der Alpen

Phase I: Neuer Raum wird geschaffen ("Rifting Phase")

Phase 2: Neue ozean. Kruste wird gebildet ("Drifting Phase")

Phase 3: Ozeanische Kruste und Transform-Brüche

3

Phase 4: Subduktion

4

Phase 5: Kollision der Kontinente

60-20 Ma: Paläozän - Miozän

G

Synopsis Perm - Kreide

60-20 Ma: Paläozän - Miozän
Synopsis Kreide - Heute

Geophysikalische Aspekte

Seismizität

(NAGRA Bericht)

Herdflächenlösungen Neotektonik

Spannungsfeld Neotektonik

Lage der Erdbeben

Regionalen Spannungszustände (horizontale Hauptspannungsrichtungen).

- ----- Front der Helvetischen Decken.
 - Front der Penninischen Decken (ohne Klippen-Decke).

Vertikalbewegungen

Vergleichsmassstab Vertikalbewegung: Hebungs-/Senkungsgeschwindigkeit = 1 mm/a

Hebung Senkung

△ Referenzpunkt Laufenburg

Mittlerer Fehler (Einfache Standardabweichung)

Gelogisches Signalement der Schweiz

Jura Helvetikum externe Massive Molasse Penninikum Südalpin

frei nach: Helmut Weissert frei nach: NTB 08-04

Tafeljura

Ost: Trias - später Jura West: Trias - Kreide

Tafeljura (inkl. Schwäbische Alb)

Autochthone mesozoische und tertiäre Sedimente der Europäischen Kontinentalplattform über Kristallin und Permokarbontrögen. Vor allem im Westen ist der Tafeljura von engständigen rheinischen Brüchen durchsetzt und in verschiedene sich in die Morphologie durchpausende Schollen zerlegt.

Tafeljura - Schäbische Alb

Amanz Gressli: Facies - Konzept

Fazieswechsel - Riffprogradation

Rheingraben Jura Molasse Abscherhorizont

Rheintalflexur: Schänzli, Rötteln

Entstehung der Flexur

Faltenjura

	Ost: Ta Se	feljura edimente autochthon, Blocktektonik
	West: Fa	ltenjura dimente abgeschert, gefaltet
	Sedimente: Alter:	Kalke, Mergel, Tone, Evaporite Ost: Trias - später Jura West: Trias - Kreide
	Deformation Alter:	on: Überschiebung, Faltung Miozän, Pliozän

Faltenjura:

Mesozoische und tertiäre Sedimente der Europäischen Kontinentalplattform, welche in der Spätphase der alpinen Gebirgsbildung von ihrer Unterlage abgeschert, nach Norden transportiert und dünnhäutig verfaltet wurden (Hauptabscherungshorizont = Evaporite der Trias). Im Liegenden frühtriadische Sedimente über Kristallin mit Permokarbontrögen.

Falten im Jura ...

Profil A. Heim

Albert Heim: Überschiebungsfalten

Falten werden zu Überschiebungen

Albert Heim (1849-1937)

ETH-Bibliothek Zürich, Bildarchiv, Bild-ID Portr_06339

August Buxtorf: Prognosen und Befunde ...

August Buxtorf: Prognosen und Befunde ...

August Buxtorf

Überschiebungen entstehen zuerst

Überschiebungen werden gefaltet

August Buxtorf (1877-1969)

Helvetikum

Helvetikum

Als Decken nach Norden verfrachtete paläozoische, mesozoische und frühtertiäre Sedimente des Europäischen Kontinentalrands. In mehrere, intern komplex deformierte Decken gegliedert.

Helvetikum

Helvetikum

Heim'sche Doppelfalte

Externe Massive

Externmassive (Aar, Gotthard, Aiguilles Rouges, Mont Blanc) Kristalline Oberkruste des Europäischen Kontinentalrands, nach Norden und Nordwesten überschoben, zerschert und in der Spätphase der alpinen Gebirgs-bildung herausgehoben. Enthalten Reste von Permokarbontrögen.

Gotthard Massiv

www.mountainbiker.ch

Externe Massive

Molasse

Mittelländische Molasse Im nördlichen Vorlandbecken der Alpen im Oligozän und Miozän abgelagerte Sedimente, welche sich ganz im Osten in autochthoner Lage befinden und im Westen in der Spätphase der alpinen Orogenese mitsamt ihrer mesozoischen Unterlage abgeschert, nach Norden transportiert und leicht deformiert wurden. Im Liegenden frühtriadische Sedimente über Kristallin mit Permokarbontrögen.

UNESCO Biosphäre Entlebuch http://www.biosphaere.ch

Molasse - Stratigraphie

vorwiegend terrestrische Bedingungen

vorwiegend marine Bedingungen

Subalpine (aufgeschobene) Molasse

Subalpine Molasse (aufgeschobene Molasse) Am Südrand des nördlichen Vorlandbeckens der Alpen im Oligozän und Miozän abgelagerte tertiäre Sedimente, welche in der Spätphase der alpinen Gebirgsbildung von der Deformation erfasst und verschuppt wurden.

USM am Speer

Ablagerungsregime

tektonische Subsidenz und Sedimentation

Penninikum

Penninikum

Kontinentale Kruste und paläozoische, mesozoische sowie frühtertiäre Sedimente des Walliser Trogs und der Briançonnais-Schwelle sowie Kruste und Sedimente des zwischen der Europäischen und der Adriatischen Platte gelegenen Piemontesisch-ligurischen Ozeans.

Ein grosser Teil der Sedimente wurde vom kristallinen Grundgebirge abgeschert und nach Norden auf das Helvetikum aufgeschoben. Später wurden das Penninische Kristallin mit der übrigbleibenden Sedimentbedeckung in Decken zerlegt und aufeinander gestapelt. Bilden in den nördlichen Voralpen Klippen (z.B. Préalpes).

Penninikum

Klippendecke (Penninikum)

Penninische Decken - Tessiner Kulmination

Ostalpin

Ostalpin

Penninikum

Engadiner Linie

Ostalpin

Kristalline Oberkruste und paläozoische sowie mesozoische Sedimente der Adriatischen Platte, in mehrere Decken gegliedert und nach Norden auf die Penninischen Decken überschoben.

Engadin von Süden

Ocean-Continent Transition (OCT)

Engadiner Fenster

Silvretta-Decke Ober-Ostalpin (adriatischer Kontinentalrand)

Aroser Schuppenzone Ober-Penninikum (Piemont Ozean)

Tasna-Decke Mittel-Penninikum (Briançonnais)

Nordpenninischer Flysch Unter-Penninikum (Walliser Trog)

Bündnerschiefer Unter-Penninikum (Walliser Trog)

pro memoria...

Klippendecke

Südalpin

Südalpin

Kristalline Unterkruste, Oberkruste und paläozoische, mesozoische und frühtertiäre Sedimente der Adriatischen Platte. Nach Süden überschoben. Bei Chiasso und südlich davon überlagert vom Tertiär des Po-Beckens.

Monte Tamaro

Südalpin - Rifting

Brekzie von Arzo

pro memoria

Lehrbuch

Pfiffner, O.A., Diamond, L., Engi, M., Mezger, K., Schlunegger, F., Baumeler, A. (Illustration) (2016) Erdwissenschaften. UTB basics 3632, Haupt Verlag, ISBN: 978-3-8252-4381-4

Weitere Literaturempfehlung (deutsch)

- Tarbuck, E.J. and Lutgens, F.K., 2009. Allgemeine Geologie. Pearson Studium
- Siever, R., 2003. Allgemeine Geologie. 3. Aufl., Spektrum, Heidelberg
- Bahlburg, H. und Breitkreuz, C., 2008. Grundlagen der Geologie, 3. Aufl., Spektrum, Heidelberg
- Weissert H., Stössel, I. (2015) Der Ozean im Gebirge. vdf Hochschulverlag. ISBN: 978-3-7281-3606-0

Weitere Literaturempfehlung (englisch)

- Tarbuck, E.J. and Lutgens, F.K., 2008. Earth, 9th ed., Prentice Hall, Upper Saddle River, NJ
- Marshak, S., 2008. Earth: Portrait of a Planet. Norton & Co., New York
- Rogers, N., editor, 2008. Our Dynamic Planet. Cambridge Univ. Press, Cambridge

Web sites

http://de.wikipedia.org http://en.wikipedia.org http://ansatte.uit.no/kare.kullerud/webgeology/ http://www.seismo.ethz.ch/ http://earthquake.usgs.gov/earthquakes/

Ende

... fast ... was noch kommt:

auf ADAM:

- korrigierte / vervollständigte slides
- Prüfungsfragen

Prüfungsstoff: Vorlesungs(-slides, -notizen) & Übungen Lehrbuch: Pfiffner et al.

im Herbst:

• Prüfung 25 % = Plattentektonik & Geophysik Strukturgeologie & Tektonik

trotzdem ... schöne Sommerferien !